# Relative age and absolute relationship statistics

### Pre/Post-Test Key

Dec 4, We can absolute date materials but it will always have an uncertainty range, we can never know the age with infinite precision. Relative dating. They provide only relative ages, not absolute ages. The rate at which a parent changed to a daughter was governed by a simple relation that was unaffected by temperature, pressure, The Law of Radioisotope Decay is a statistical law. If a geologist claims to be 45 years old, that is an absolute age. Crosscutting Relationships: Relative ages of rocks and events may also be determined using.

How do scientists actually know these ages? Geologic age dating—assigning an age to materials—is an entire discipline of its own. In a way this field, called geochronology, is some of the purest detective work earth scientists do. There are two basic approaches: Here is an easy-to understand analogy for your students: Absolute age dating is like saying you are 15 years old and your grandfather is 77 years old. To determine the relative age of different rocks, geologists start with the assumption that unless something has happened, in a sequence of sedimentary rock layers, the newer rock layers will be on top of older ones.

This is called the Rule of Superposition. This rule is common sense, but it serves as a powerful reference point. Geologists draw on it and other basic principles http: Relative age dating also means paying attention to crosscutting relationships. Say for example that a volcanic dike, or a fault, cuts across several sedimentary layers, or maybe through another volcanic rock type. Pretty obvious that the dike came after the rocks it cuts through, right? With absolute age dating, you get a real age in actual years.

Based on the Rule of Superposition, certain organisms clearly lived before others, during certain geologic times. With this kind of uncertainty, Felix Gradstein, editor of the Geologic Time Scale, suggests that we should stick with relative age terms when describing when things happened in Earth's history emphasis mine: For clarity and precision in international communication, the rock record of Earth's history is subdivided into a "chronostratigraphic" scale of standardized global stratigraphic units, such as "Devonian", "Miocene", "Zigzagiceras zigzag ammonite zone", or "polarity Chron C25r".

Unlike the continuous ticking clock of the "chronometric" scale measured in years before the year ADthe chronostratigraphic scale is based on relative time units in which global reference points at boundary stratotypes define the limits of the main formalized units, such as "Permian".

The chronostratigraphic scale is an agreed convention, whereas its calibration to linear time is a matter for discovery or estimation. We can all agree to the extent that scientists agree on anything to the fossil-derived scale, but its correspondence to numbers is a "calibration" process, and we must either make new discoveries to improve that calibration, or estimate as best we can based on the data we have already. To show you how this calibration changes with time, here's a graphic developed from the previous version of The Geologic Time Scale, comparing the absolute ages of the beginning and end of the various periods of the Paleozoic era between and I tip my hat to Chuck Magee for the pointer to this graphic.

Fossils give us this global chronostratigraphic time scale on Earth. On other solid-surfaced worlds -- which I'll call "planets" for brevity, even though I'm including moons and asteroids -- we haven't yet found a single fossil. Something else must serve to establish a relative time sequence.

That something else is impact craters. Earth is an unusual planet in that it doesn't have very many impact craters -- they've mostly been obliterated by active geology.

Venus, Io, Europa, Titan, and Triton have a similar problem. On almost all the other solid-surfaced planets in the solar system, impact craters are everywhere.

## What is the difference between absolute age and relative age of fossils?

The Moon, in particular, is saturated with them. We use craters to establish relative age dates in two ways. If an impact event was large enough, its effects were global in reach. For example, the Imbrium impact basin on the Moon spread ejecta all over the place. Any surface that has Imbrium ejecta lying on top of it is older than Imbrium. Any craters or lava flows that happened inside the Imbrium basin or on top of Imbrium ejecta are younger than Imbrium.

• Relative and absolute ages in the histories of Earth and the Moon: The Geologic Time Scale
• Geologic Age Dating Explained
• Relative Vs. Absolute Dating: The Ultimate Face-off

Imbrium is therefore a stratigraphic marker -- something we can use to divide the chronostratigraphic history of the Moon. Apollo 15 site is inside the unit and the Apollo 17 landing site is just outside the boundary. There are some uncertainties in the positions of the boundaries of the units. The other way we use craters to age-date surfaces is simply to count the craters.

At its simplest, surfaces with more craters have been exposed to space for longer, so are older, than surfaces with fewer craters.

## Pre/Post-Test Key

Of course the real world is never quite so simple. There are several different ways to destroy smaller craters while preserving larger craters, for example.

Despite problems, the method works really, really well. Most often, the events that we are age-dating on planets are related to impacts or volcanism. Volcanoes can spew out large lava deposits that cover up old cratered surfaces, obliterating the cratering record and resetting the crater-age clock.

When lava flows overlap, it's not too hard to use the law of superposition to tell which one is older and which one is younger. If they don't overlap, we can use crater counting to figure out which one is older and which one is younger. In this way we can determine relative ages for things that are far away from each other on a planet. Interleaved impact cratering and volcanic eruption events have been used to establish a relative time scale for the Moon, with names for periods and epochs, just as fossils have been used to establish a relative time scale for Earth.

The chapter draws on five decades of work going right back to the origins of planetary geology. The Moon's history is divided into pre-Nectarian, Nectarian, Imbrian, Eratosthenian, and Copernican periods from oldest to youngest. The oldest couple of chronostratigraphic boundaries are defined according to when two of the Moon's larger impact basins formed: There were many impacts before Nectaris, in the pre-Nectarian period including 30 major impact basinsand there were many more that formed in the Nectarian period, the time between Nectaris and Imbrium.

The Orientale impact happened shortly after the Imbrium impact, and that was pretty much it for major basin-forming impacts on the Moon. I talked about all of these basins in my previous blog post. Courtesy Paul Spudis The Moon's major impact basins A map of the major lunar impact basins on the nearside left and farside right. There was some volcanism happening during the Nectarian and early Imbrian period, but it really got going after Orientale.

Vast quantities of lava erupted onto the Moon's nearside, filling many of the older basins with dark flows. So the Imbrian period is divided into the Early Imbrian epoch -- when Imbrium and Orientale formed -- and the Late Imbrian epoch -- when most mare volcanism happened.

### What is the difference between absolute age and relative age of fossils? | Socratic

People have done a lot of work on crater counts of mare basalts, establishing a very good relative time sequence for when each eruption happened. The basalt has fewer, smaller craters than the adjacent highlands. This technique solely depends on the traces of radioactive isotopes found in fossils.

The rate of decay of these elements helps determine their age, and in turn the age of the rocks. Physical structure of living beings depends on the protein content in their bodies.

### Relative Vs. Absolute Dating: The Ultimate Face-off

The changes in this content help determine the relative age of these fossils. Each tree has growth rings in its trunk. This technique dates the time period during which these rings were formed.

It determines the period during which certain object was last subjected to heat. It is based on the concept that heated objects absorb light, and emit electrons. The emissions are measured to compute the age.

Differentiation Using a Venn Diagram A Venn diagram depicts both dating methods as two individual sets. The area of intersection of both sets depicts the functions common to both. Take a look at the diagram to understand their common functions. When we observe the intersection in this diagram depicting these two dating techniques, we can conclude that they both have two things in common: